摘要
不同行人的高度相似性以及相同行人外观姿态的差异性,使得不同摄像头下的行人重识别面临严峻的挑战。生成对抗网络可以合成新的图像,被认为是解决行人姿态变化的主要技术手段。本文提出一种基于多姿态图像生成的行人重识别算法,利用生成对抗网络生成不同姿态的行人图像,通过归一化消除姿态的影响,从而大幅度提升行人重识别的整体性能。该行人重识别算法包括多姿态行人图像生成,不同姿态的行人特征提取与融合,距离度量和重排序三部分内容。在Market-1501数据集和DukeMTMC-ReID数据集上的实验证实了所提出算法的有效性,通过与state-of-the-art行人重识别方法比较,展示了多姿态图像生成方法在行人重识别任务中的优越性,同时表明生成行人图像的特征与原始图像的特征是相互补充的。
- 单位