摘要

针对目前深度卷积神经网络(Convolutional Neural Network,CNN)在遥感图像建筑物提取上存在小目标漏分、被遮挡目标无法提取、细节缺失等问题,在生成对抗网络(Generative Adversarial Network,GAN)的基础上提出一种基于多尺度条件生成对抗网络(Multi-Scale Conditional Generative Adversarial Network,MSR-cGAN)的城市建筑物提取方法.该方法包括生成网络和对抗网络两个部分,在生成网络中加入循环残差卷积模块和注意力门限跳跃连接机制,增强模型的特征提取能力;在对抗网络中引入通道注意力的特征融合,使网络提取丰富的上下文信息,应对目标尺度变化,改善小目标分割效果.在实验过程中,对Inria Aerial Image Labeling建筑物提取数据集进行实验并与多种方法进行比较,结果表明,所提出的方法具有更高的目标分割准确率,对小目标与被遮挡目标取得了较好的分割效果.在训练数据有限、背景复杂多样、尺度变化较大的建筑物提取中分割准确率分别达到96.18%,表明提出的方法可应用于复杂的高分辨率遥感图像建筑物提取.

  • 单位
    河南省地质调查院