摘要

目前,变电设备信息化程度不断提高,对二次设备各模块提出更高的数字化要求。为解决二次设备压板状态人工识别程序繁杂、耗时长、容易出错等问题,提高压板巡视效率,维护二次设备安全稳定运行,本文通过研究比对机器学习算法和深度学习目标检测算法等方法的难易程度和准确率等因素,最终选择YOLOv3算法。将压板标准态文档转换成JSON数据后,使用基于imageNET的YOLOv3-Darknet-53预训练模型,导入压板开关图像样本集。使用LabelImg标注样本集后,进行深度学习得出训练后模型,运用该模型得到现场压板图识别数据,将标准态数据与实际图片数据对比绘制图形,实现压板开关状态准确识别和标注。结果表明,压板开关位置、开关状态识别成功率达到99%,有效地提升了压板巡视工作效率和准确度,极大地提高了二次设备数字化水平。