摘要
针对成像设备在夜间等低照度环境下采集的图像存在细节丢失、动态范围较窄和大量噪声等特点,导致采集图像清晰度低、可用性不高和识别性较差等问题,提出了一种多层次特征融合(Multi-level Feature Fusion, MFF-Net)算法。该算法利用多尺度采样构建U型网络,并引入多种注意力机制多线程处理图像流,各支路特征向量跨通道交互,协同渐进式抑制冗余信息。高效运用特征融合模块强化对低尺度纹理细节和多层次特征的感知。设计了由峰值信噪比(Peak Signal to Noise Ratio, PSNR)和结构相似性(Structural Similarity, SSIM)指标构成的损失函数,有目的地引导网络由浅到深地学习图像之间的映射关系,从而加快模型收敛速度,助力提高模型性能和图像增强。所提算法在LOL数据集Low-Light Dataset上进行了相关实验和测试。其PSNR、SSIM和学习感知图像块相似度(Learned Perceptual Image Patch Similarity, LPIPS)等6种客观评价指标上整体优于大部分先进算法。实验结果表明,所构建的模型能有效抑制图像失真、噪声问题并显著提高图像质量和照度。
-
单位自动化学院; 江西理工大学