摘要

将水平定向钻技术应用于超长距离隧道地质勘察,可避免传统竖直勘察的诸多局限性,改变当前隧道工程地质勘察现状。通过新疆天山胜利隧道现场采集的随钻参数构建围岩预测数据集,经过数据不平衡处理后将泥浆压力、钻进速度及修正孔底钻进压力作为围岩分类评估指标,引入多种机器学习算法构建分类模型并采取网格搜索交叉验证的方法调参优化,以准确率、精确率、召回率、F1值等指标对各模型分类性能进行评估验证与探讨。结果表明:(1)大部分算法对碳质板岩与片麻状花岗岩具有较好的分类性能,对石英片岩的预测准确率则较低;(2)随机森林、决策树与梯度提升决策树分类性能最好,AdaBoost分类器表现最差;(3)机器学习分类方法相对传统方法在处理非线性问题时更有优势,建立数据-物理双驱动的围岩智能分类理论与模型是今后发展趋势之一。研究结果可为水平定向钻钻孔围岩预测分类问题提供指导。

全文