摘要

准确的流量预测提升通信网络技能、改善通信网络管理具有重要意义。考虑到长短期记忆(Long ShortTerm Memory, LSTM)神经网络可解决长序列数据在训练过程中的存在梯度消失问题,采用LSTM作为长期流量预测的基准模型,为提高模型准确性,在LSTM模型的基础上,引入Attention机制(Attention mechanism, AM),通过映射加权和学习参数矩阵赋予LSTM隐含状态不同的权重,减少历史信息的丢失并加强重要信息的影响作用,以完成流量的预测。

全文