为了提高预测的准确性,文中结合机器学习中堆积(Stacking)集成框架,组合多个分类器对标记分布进行学习,提出基于标记分布学习的异态集成学习算法(HELA-LDL).算法构造两层模型框架,通过第一层结构将样本数据采用组合方式进行异态集成学习,融合各分类器的学习结果,将融合结果输入到第二层分类器,预测结果是带有置信度的标记分布.在专用数据集上的对比实验表明,HELA-LDL可以发挥各种算法在不同场景下的性能较优,稳定性分析进一步说明算法的有效性.