摘要

分组模型是指根据借款人的行为特征分出不同的客群,是信用评分模型开发中的重要一环,可以提升信用评分模型的精度。采用模糊C均值聚类和CART决策树两种方法对全部借款人进行分组,并对分组后的每个客群进行WOE数值转换和逻辑回归信用评分模型的构建,通过对比发现分组后信用评分模型的KS和AUC均有提升,其中模糊C均值聚类作为无监督学习方法也取得较好的模型性能。