摘要
针对全变分模型不能很好的保持图像边缘信息这一问题,有学者提出了基于边缘定向增强扩散模型,但该模型对图像细节处理不够.快速非局部均值(Fast Non-local means, FNLM)算法利用图像的自相关性与结构信息的冗余性,提高了去噪效果,但不能同时最大限度保持图像边缘信息又抑制平坦区域噪声.由于通过利用结构张量性质,可获取图像的边界、拐角、纹理等重要信息,本文引入结构张量改进边缘定向增强扩散模型,保持了图像边缘,并在此基础上提出了一种基于边缘增强和快速非局部均值的边缘图像去噪模型.该模型通过选取不同的边缘增强正则化参数,根据图像扩散幅度不同,获取带有纹理及噪声的边缘图像;然后对该边缘图像进行FNLM去噪,即过滤出图像原有的纹理结构信息;最后将之反馈到之前的边缘增强去噪图像中.实验结果表明,该方法不仅能够保留较多的纹理细节信息,而且很好的缓解了图像平滑和细节保持的矛盾.
- 单位