摘要

目的 对采样设备获取的测量数据进行拟合,可实现原模型的重建及功能恢复。但有些情况下,获取的数据点不仅包含位置信息,还包含法向量信息。针对这一问题,本文提出了基于圆平均的双参数4点binary非线性细分法与单参数3点ternary插值非线性细分法。方法 首先将线性细分法改写为点的重复binary线性平均,然后用圆平均代替相应的线性平均,最后用加权测地线平均计算的法向量作为新插入顶点的法向量。基于圆平均的双参数4点binary细分法的每一次细分过程可分为偏移步与张力步。基于圆平均的单参数3点ternary细分法的每一次细分过程可分为左插步、插值步与右插步。结果 对于本文方法的收敛性与C1连续性条件给出了理论证明;数值实验表明,与相应的线性细分相比,本文方法生成的曲线更光滑且具有圆的再生力,可以较好地实现3个封闭曲线重建。结论 本文方法可以在带法向量的初始控制顶点较少的情况下,较好地实现带法向约束的离散点集的曲线重建问题。