摘要

点云语义分割是场景理解的基础问题。大多数针对大场景点云的语义分割方法精心设计局部特征聚合模块以减少降采样点云过程中的信息损失,然而未能高效地利用多尺度局部特征推理点云语义信息。为此,文中提出一种多尺度特征自适应融合的插值方法,以实现更准确的大场景点云语义分割算法。首先,通过注意力机制的局部特征聚合模块学习点云内部的语义关系,描述局部模式的各项异性;然后,以不同的采样率随机地采样点云产生多尺度的稀疏局部特征图;最后,使用特征自适应融合的插值法代替广泛使用的最近邻插值法,恢复全分辨率的特征图,为原始密度的点云提供更准确的语义信息。在SemanticKITTI和S3DIS两个大场景点云数据集上对所提算法进行评估,结果表明,所提算法的平均交并比(mIoU)分别为54.24%、75.5%,平均准确率(mACC)分别达到88.92%、86.5%,比大多数主流算法的分割效果更加准确。

全文