摘要
本发明公开的一种基于上下文深度语义信息的图像检索方法,主要解决现有图像检索方法由于缺乏上下文环境信息而造成的准确率低的问题。实现步骤为:①使用自适应极化栅栏法确定图像关键点;②对卷积神经网络进行预训练和微调,构建包含区域分析层、迭代量化层的极化卷积神经网络;③提取关键点的上下文深度语义特征,并将其存入索引表,完成线下索引;④计算查询图像与数据库中每幅图像的相似度;⑤根据相似度从高到低的顺序输出检索结果。本发明使用上下文深度语义特征实现了图像关键点从区域到全局环境的匹配,提出的自适应极化栅栏法和构建的区域分析层符合全天空极光图像的成像特点,检索准确率高,可用于鱼眼镜头成像的大规模图像的精确检索。
- 单位