C5.0算法是一种直观、效率高的分类方法,但该算法存在信息增益率计算复杂、容易出现过拟合和决策树偏倚的问题。针对这些问题,通过公式的转换简化信息增益率的计算过程,在剪枝过程采用了损失矩阵和置信区间的结合进行剪枝判断,以及对建立的多个模型的权重进行调整,提出了一种新的C5.0改进算法,并将其应用于信贷逾期预测上。使用借款人的历史还款数据进行实验,并与其他算法进行比较,结果表明:C5.0改进算法相比其他算法具有更高的准确率和效率。