摘要

灰狼优化算法(GWO)是一种受灰狼群体捕食行为启发的新型群智能优化算法。为提高灰狼优化算法的全局搜索能力,避免算法过早收敛,提高原算法精度。本文提出了一个改进版本的灰狼优化算法,在原始的灰狼优化算法上引入Lévy飞行策略,命名为基于Lévy飞行的灰狼优化算法(LGWO)。通过将LGWO应用于8个标准测试函数并与基本灰狼优化算法(GWO)及粒子群-引力搜索算法(PSOGSA)进行对比,实验仿真表明,LGWO算法收敛速度更快且寻优精度更高。