摘要
功能梯度材料(FGM)的特性与孔隙量有密切的关系,孔隙率会影响FGM的弹性模量、泊松比和密度等。依据经典薄板理论和Hamilton原理建立了四边受压多孔FGM矩形板自由振动和屈曲的数学模型并对控制方程进行无量纲化。运用微分变换法(DTM)对无量纲控制微分方程及其边界条件进行变换,经过迭代求解,得到多孔FGM矩形板的无量纲固有频率和无量纲临界屈曲载荷。将该问题退化为孔隙率为零时FGM矩形板的自由振动并与其精确解进行对比,发现DTM计算精度较高,这验证了该方法在求解四边受压多孔FGM矩形板自由振动和屈曲问题的有效性。计算结果表明,多孔FGM矩形板的弹性模量随梯度指数与孔隙率的增大而减小。进一步分析了在不同边界条件下长宽比不变时梯度指数、孔隙率对无量纲的固有频率和临界屈曲载荷的影响,以及不同边界条件下长宽比、载荷对无量纲固有频率的影响。
- 单位