摘要
随着微波器件结构复杂度的增长和产品性能要求的提高,微波器件建模不仅要能够描述其理想电磁特性,还要能快速准确反映多物理参数对器件性能的影响。虽然神经网络已经被引入到微波器件领域,但是将其应用于器件的多物理特性建模的研究还比较少。文章提出了一种基于人工神经网络的多物理参数建模方法来表示输入输出变量之间的非线性关系。提出了一种高效的神经网络多物理参数模型,并针对该模型引入了一种新的训练算法。所提出的模型可以快速准确地预测微波器件的多物理响应,如滤波器的S参数特性曲线、离子敏感场效应晶体管的输出特性曲线等。与有限元方法相比,此方法可以节省约98%的计算成本与99%的计算时间,为实现快速高效的微波器件行为级建模提供一种可行方法。
- 单位