摘要

为了有效去除地震数据随机噪声,提出了一种基于卷积神经网络(CNN)的地震数据随机噪声去除算法。算法的关键在于构建一个适用于地震数据去噪的CNN,包含输入层、卷积层、激活层、输出层等。该CNN以含噪地震数据作为输入层,由多个卷积层提取并处理地震数据,激活层采用修正线性单元(ReLU)获取地震数据波动特征,再借助归一化层加速网络训练收敛速度。CNN通过残差学习获得随机噪声并由网络输出层输出。分别采用小波变换、双树复小波变换、曲波变换以及CNN对实际叠前海上地震数据、叠后陆地数据及复杂陆地叠后数据进行去噪,实验结果表明,CNN能有效去除随机噪声,且与常规去噪算法相比具有更强的去噪能力,验证了算法的可行性和有效性。