摘要
在引入智能优化算法的径向基神经网络训练算法中,智能优化算法的控制参数对该算法的学习性能影响很大.为此,提出了一种基于单形进化的径向基神经网络训练算法.该算法基于单形邻域的全随机搜索方法减少算法控制参数,借助群体的多角色态保持粒子的多样性,避免算法陷入局部极值点.仿真结果表明:相比于其他算法,该算法训练的径向基神经网络不仅有效提高了识别率,而且减少了控制参数对学习性能的影响,提高了算法的普适性与鲁棒性.
-
单位自动化学院; 昆明理工大学