摘要
目的运用视觉和机器学习方法对步态进行研究已成为当前热点,但多集中在身份识别领域。本文从不同的视角对其进行研究,探讨一种基于点云数据和人体语义特征模型的异常步态3维人体建模和可变视角识别方法。方法运用非刚性变形和蒙皮方法,构建基于形体和姿态语义特征的参数化3维人体模型;以红外结构光传感器获取的人体异常步态点云数据为观测目标,构建其对应形体和姿态特征的3维人体模型。通过Conv GRU(convolution gated necurrent unit)卷积循环神经网络来提取其投影深度图像的时空特征,并将样本划分为正样本、负样本和自身样本三元组,对异常步态分类器进行训练,以提高分类器对细小差异的鉴别能力。同时对异常步态数据获取难度大和训练视角少的问题,提出了一种基于形体、姿态和视角变换的训练样本扩充方法,以提高模型在面对视角变化时的泛化能力。结果使用CSU(Central South University) 3维异常步态数据库和DHA(depth-included human action video)深度人体行为数据库进行实验,并对比了不同异常步态或行为识别方法的效果。结果表明,本文方法在CSU异常步态库实验中,0°、45°和90°视角下对异常步态的综合检测识别率达到了96.6%,特别是在90°到0°交叉和变换视角实验中,比使用DMHI(difference motion history image)和DMM-CNN(depth motion map-convolutional neural network)等步态动作特征要高出25%以上。在DHA深度人体运动数据库实验中,本文方法识别率接近98%,比DMM等相关算法高出2%~3%。结论提出的3维异常步态识别方法综合了3维人体先验知识、循环卷积网络的时空特性和虚拟视角样本合成方法的优点,不仅能提高异常步态在面对视角变换时的识别准确性,同时也为3维异常步态检测和识别提供一种新思路。
- 单位