本文主要研究了微分形式中的相关不等式.利用A-调和方程的性质及与该方程相关的弱逆Holder不等式和一类满足非标准增长条件的Young函数的性质,获得了一类特殊的微分形式(即非齐次A-调和张量)在该类Young函数作用下的Caccoppoli不等式及其高阶可积性.该结论将微分形式中Caccoppoli不等式由Lp空间推广到了由该类Young函数构成的Orlicz空间,同时验证了该Caccoppoli不等式可以用于微分形式的定量估计和定性分析.