摘要
提出了基于CART回归树的氮氧化物(NO_x)浓度预测模型,利用杭州市延安路路边空气质量监测站2016年6—9月空气污染物监测数据和同期延安路路段车辆抓拍识别数据,通过数据处理、影响因素分析及CART回归树构造,搭建了NO_x浓度预测模型.实验分析结果表明,相对于支持向量机和BP神经网络预测模型,基于CART回归树的NO_x浓度预测模型的预测精度有大幅度提升,可决系数在0.92以上;同时,对环境条件差异较大的G20会议期间NO_x浓度进行预测分析,结果表明,CART回归树方法的预测精度比其它方法更高,能够适应不同条件下的预测需求.
-
单位浙江工业大学; 杭州市环境保护科学研究院