摘要

随着经济的快速发展及低碳环保出行方式的普及,电动摩托车投入量逐年上升,但由此带来的安全隐患也随之上升.针对传统的人工检查骑手是否规范佩戴安全帽耗时、耗力且存在漏检等问题,提出一种基于改进YOLOv5的头盔检测算法.首先,针对摩托车头盔大小尺寸不一的问题,使用K-means++算法重新设计初始锚框,增加了网络收敛速度;其次引入坐标注意力机制(Coordinate Attention),增强网络学习特征的表达能力;最后,引入α-IoU损失函数提高目标检测精度.实验表明,改进的YOLOv5模型的mAP达到98.83%,比YOLOv5的平均精度提升了5.29%,符合在道路复杂环境下对电动摩托车驾驶人头盔检测的要求.

  • 单位
    太原师范学院