摘要
使用差分吸收光谱技术(Differential optical absorption spectroscopy,DOAS)进行工业在线气体检测,在气体浓度较低时,其光谱吸收不明显,信噪比较低,通过传统方法来对工业气体浓度进行反演,预测结果难以满足工业应用具体要求。针对SO2气体的差分吸收光谱特点,采用氚灯作为光源,采集189.73~644 nm波段内的标准浓度SO2的吸收光谱高维数据,选取吸收光谱数据并进行预处理,然后利用训练集数据建立深度信念网络模型进行低维特征提取。在此基础上,利用训练数据的低维嵌入特征构建极限学习机反演模型,实现SO2气体浓度计算,并对该模型进行了有效性测试,从而得到一种更加精确的SO2气体浓度在线检测方法。
-
单位重庆大学; 重庆川仪自动化股份有限公司