摘要
高斯径向基函数是基于光谱向量间欧氏距离的度量,其对于同种地物光谱变化的适应性较弱,使得基于高斯径向基函数的高光谱影像谱聚类算法的性能下降。为了解决该问题,从光谱曲线形状描述出发,基于光谱角度余弦提出了一种新型光谱相似度量,并将其用于构建谱聚类算法的亲和度矩阵。最后利用多组高光谱数据进行了实验分析,结果证明了该算法的有效性。
-
单位遥感科学国家重点实验室; 信息工程大学测绘学院; 中国科学院遥感与数字地球研究所
高斯径向基函数是基于光谱向量间欧氏距离的度量,其对于同种地物光谱变化的适应性较弱,使得基于高斯径向基函数的高光谱影像谱聚类算法的性能下降。为了解决该问题,从光谱曲线形状描述出发,基于光谱角度余弦提出了一种新型光谱相似度量,并将其用于构建谱聚类算法的亲和度矩阵。最后利用多组高光谱数据进行了实验分析,结果证明了该算法的有效性。