摘要
本发明公开了一种基于可变形卷积网络的流场识别方法,所述通过已有数据集对预训练网络进行预训练;将预训练网络的全连接层更换成卷积层,通过迁移学习思想,将预训练后获得的权重参数迁移到流场识别模型中;通过所述流场识别模型对图像进行逐像素分类实现流场识别。本发明首先,利用预训练网络对已有数据集进行图像深层特征提取,并不断迭代学习,自动调整网络参数;其次,将预训练网络的全连接层更换成卷积层,并利用迁移学习思想,将预训练得到的权重参数迁移到识别模型中;最后,在网络中引入可变形卷积提取图像特征,并通过密集预测对图像进行逐像素分类,实现流场识别。
- 单位