摘要

为了拓展分数阶微分方程边值问题的基本理论,研究了共振情形下double-order Hilfer分数阶微分方程在Riemann-Stieltjes积分边界条件下解的存在性。首先,构造2个合适的Banach空间;然后,在Banach空间中定义恰当的算子并使用Mawhin重合度理论,获得double-order Hilfer分数阶共振边值问题解的存在性;最后,通过例子验证结果的正确性。结果表明,在合适的Banach空间中,double-order Hilfer分数阶共振边值问题的解具有存在性。采用Mawhin重合度理论方法研究double-order Hilfer分数阶共振边值问题解的存在性,扩展了微分算子阶数的取值范围,丰富了分数阶微分方程的可解性理论,为微分方程在空气动力学、经济学、控制理论等领域的应用提供了理论参考。