摘要
利用2018年4—9月西北地区共10 189站逐小时降水观测资料及0.25°×0.25°分辨率的欧洲中期天气预报中心(European Centre for Medium-Range Weather Forecasts,ECMWF)预报资料,用V-3θ图及Keras方法,建立了由分类模型和降水量拟合模型组成的河西走廊降水预报模型,再通过“分类检验损失函数”、“TS检验”和“拟合检验均方根误差”三种方法检验了该降水预报模型的预报效果。结果表明:基于Keras建立的两个神经网络框架,采用“k折交叉”和逻辑回归方法,使模型更加可靠、特征关系更加合理,降低特征量的误差影响;衍生V-3θ图,增加特征值的种类,可缩小河西走廊降水预报模型主观识别偏差,实现了降水垂直结构预报的客观定量化;通过三种方法进行检验,发现该模型总体白天预报结果优于夜间,12—18 h的预报结果与实际值最为符合;利用个例对比发现,该模型可较准确地预报降水过程的发生时间、主要降水时段、降水区域范围及降水中心强度,证实该模型对强降水天气有较强的预报能力。
-
单位甘肃省酒泉市气象局