摘要

研究一种基于神经网络的太阳能电池板缺陷检测方法,利用DenseNet网络模型对缺陷进行检测,在该模型中加入转换器保证相邻模块间的大小,融入L2正则化可以在一定程度上避免过拟合现象,调整Batch Normalization层在避免梯度消失的同时加快收敛速度,使用SELU激活函数可以提高模型的鲁棒性。

  • 单位
    山西工程职业技术学院

全文