基于EMD与SSA-SVM的轴承故障诊断

作者:张延军; 杨博*
来源:组合机床与自动化加工技术, 2023, (08): 113-117.
DOI:10.13462/j.cnki.mmtamt.2023.08.024

摘要

为提高轴承早期故障诊断的准确率,使用经验模态分解(EMD)与麻雀算法(SSA)改进的支持向量机(SVM)结合的方式对故障进行诊断。首先,使用ADAMS软件采集6203轴承外圈、滚子及内圈故障的振动仿真信号;其次,将仿真信号及实际信号作为输入信号进行EMD分解,同时对分解的IMF分量选择自相关性最大的进行Hilbert包络处理;最后,对包络处理得到的故障频率选取前3个峰值采用SSA-SVM对故障进行诊断。不同的输入样本及不同的算法模型的诊断结果表明选取故障频率作为输入特征向量,在SSA-SVM中能够准确的诊断出故障类别,证明ADAMS能很好的解决轴承故障数据的采集问题,所用的诊断方法为轴承故障诊断提供了一种高准确率的方法。

全文