摘要

针对传统卷积神经网络(CNN)对左心室的分割精度低且在特征提取过程中存在特征冗余的问题,在传统卷积神经网络的基础上提出基于Octave卷积的超声心动图左心室分割方法。首先,使用Octave卷积对图像进行特征提取,将特征图分为高频部分和低频部分,在卷积的过程中减少了低频信息的使用,从而降低了网络模型的计算量;其次,提出了新的损失函数,将交叉熵和Dice系数进行加权结合。实验结果表明,利用该方法在二腔心数据集上测试,其分割结果的平均像素交并比(MIoU)能够达到79.21%,较传统的U-net卷积神经网络精度提升6.1个百分点,在拥有低计算量的同时提高了分割精度。