针对大多数现有的标记分布学习算法从全局角度利用标记相关性,忽略了仅存于部分示例范围内的局部标记相关性,同时,算法性能会受到无关和冗余特征干扰的问题,提出一种基于局部标记相关性的标记分布学习算法(LDL-LLC)。通过对训练数据进行分组,将每组训练数据的标记相关性约束在标记输出上,探索和利用局部标记相关性,引入特征选择常用的范数约束,学习标记私有特征和共享特征。在多个真实标记分布数据集上的对比实验结果表明,LDL-LLC算法性能良好。