摘要
知识追踪模型以学习者的历史学习行为数据作为输入,通过概念表示来描述学习者的概念掌握状态,从而预测学习者未来的学习表现。然而在概念的外延表示方面,当前知识追踪研究的概念外延信息被限制在一阶相关的范畴内,无法表征概念的一阶以上外延信息。为了解决这一问题,提出方法首先使用图结构描述概念内涵信息及其相互关系;其次使用图神经网络的池化操作等提取概念的外延表示,这保证了概念的外延信息来源于多阶相关关系;再与概念的内涵表示进行融合;最后预测学习者未来的答题情况。为了验证该模型的有效性和效率,选取了四个主流知识追踪模型作为对比模型,在四个常用的知识追踪数据集上进行实验。结果表明,提出模型在若干评价指标上均取得了一定的优势,说明了它的有效性;在模型性能方面,提出模型达到最优评价指标所需的迭代次数最少,说明了它的效率;在实际应用方面,以该模型为基础实现了一个智能学习平台,在三门线下课程的教学过程中判断和预测学习者未来答题情况,取得了优于其他知识追踪模型的表现。
- 单位