摘要

针对当前人力资源成本评估算法存在准确度低、效果差等难题,为了提高人力资源成本评估精度,设计了基于数据驱动的人力资源成本评估算法。收集人力资源成本评估数据,并采用混沌理论对数据进行重构,还原人力资源成本变化特点,通过极限学习机建立人力资源成本评估算法,并通过粒子群算法对极限学习机进行优化,最后进行了人力资源成本评估仿真实验。结果表明,所提算法可以反映人力资源成本的变化特点,改善了人力资源成本的评估结果,获得了比其他人力资源成本评估模型更优的结果,具有广泛的应用前景。

全文