摘要

针对地铁车辆轮轨振动信号信噪比低、非线性、不平稳等特点,为更好地提取地铁平轮的故障特征,提出一种基于变分模态分解(VMD,variationl mode decomposition)和包络谱熵的地铁平轮故障诊断方法。首先,构建虚拟仿真信号做变分模态分解,并与经验模态分解进行对比分析,说明VMD方法的有效性,再对实测4种工况的轮轨振动信号进行变分模态分解,求出不同分解模态的包络谱熵值,最后采用支持向量机分析故障诊断效果。试验结果表明:提出的方法能够有效地提取平轮故障特征,对地铁车辆平轮故障状态具有良好的诊断效果。

全文