摘要
特定领域的FAQ问答系统通常存在以下3个问题:(1)如何有效地对句子进行语义表示;(2)如何有效地进行句子间的语义匹配;(3)领域词汇的分词问题。为解决上述3个问题,提出一种基于Tri-BiLSTM-CNN的深度学习模型。首先,将双向长短期记忆网络和卷积神经网络结合构建网络模型,综合利用了BiLSTM处理序列化数据的优势和CNN捕获局部特征的优势。然后,采用Triplet并列式排列结构进行句子之间的匹配。最后,使用字向量替代词向量,避免了分词错误对模型的影响。在钻井安全领域的真实数据集上进行实验验证,结果表明,Tri-BiLSTM-CNN模型能更好地对句子语义进行向量化表征,显著提升句子相似度计算的准确率,而且效果明显优于CNN和LSTM两种网络结构。将该模型用于钻井安全领域的FAQ问答系统中,有效减少了人工成本,对改善钻井工作的效率和质量具有重要意义和应用价值。
- 单位