摘要

针对轨道交通车辆中的变流器噪声降噪问题,提出一种基于多层支持向量回归(Support Vector Regression,SVR)的选择机制,用以构建噪声预测模型。首先,以训练基准函数为支撑,构建特征向量与SVR、核函数之间的映射关系。随后根据测试数据的特征,依托之前的映射关系,完成SVR、核函数的筛选。最后,使用粒子群优化算法(Particle Swarm Optimization,PSO)完成参数匹配和模型构建。研究中先通过三个测试函数,验证多层SVR选择机制的准确率,再将构建的方法应用于变流器的噪声预测。结果表明:同其他常用的SVR方法相比,所研究的方法在预测效果上取得较大的提升。

  • 单位
    湖南大学; 株洲中车时代电气股份有限公司