摘要

针对自然场景中文字背景复杂多样、形态大小各异的问题,提出了一种新的基于分割的场景文本检测网络。通过构建多尺度池化和双向特征融合两个模块来提升网络性能。根据文本实例的特点,多尺度池化模块使用不同长宽比窗口的空间池来捕获不同距离上文本信息的依赖关系,指导网络得到更加准确的分割结果。双向特征融合模块构建了两条不同方向的融合路径,以更好的利用主干网络的不同尺度特征,提升网络对不同尺度文本的检测性能。实验结果证明了所提方法的有效性,在ICDAR2015、MSRA-TD500和Total-Text这三个公开数据集上,分别取得了87.71%、86.70%和85.52%的F-measure值。