摘要
针对目前识别牧草种子存在主要依赖于耗时费力的人工种植识别、自动化程度低等问题,本文提出并构建了基于深度学习的多层卷积神经网络禾本科牧草种子分类识别模型。通过改进单层卷积层优化提取牧草种子深度特征,并通过softmax种子分类器对10类禾本科牧草种子进行训练与分类,同时与其他分类识别方法进行比较分析。结果表明:本模型对10类纹理特征极为相似的禾本科牧草种子图像的识别率可达到91.67%,比其他方法平均高出7%~44%,并且模型具有很好的鲁棒性。验证了深度学习在牧草识别中的可行性,为牧草管理数字化提供了参考。
- 单位