针对标签相关性的表征问题,提出一种基于三角距离相关性的标签分布学习算法。首先,构建距离映射矩阵,描述标签分布和特征矩阵之间的映射关系。其次,设计新的三角距离,以表征标签之间的相关性。最后,结合标签相关性,设计基于Kullback-Leibler散度的目标函数。在8个数据集上的实验结果表明,与8种主流算法相比,本文提出的算法在6个准确性指标上占优势。