针对现有成绩预测方法不能有效利用学生成绩数据本质特征的问题,提出一种自编码组合优化的成绩预测模型。该模型采用边缘降噪自编码与堆栈稀疏自编码组合优化的混合式自编码器(HSAE),从历史成绩数据与学生行为数据中,经过无监督的网络训练,学习更具鲁棒性和稀疏性的深层特征。在顶层连接BP神经网络,构成HSAE-BP神经网络模型,实现学生成绩预测。实验结果表明:所提出预测模型的预测准确率相比其他未进行特征学习的浅层预测模型都得到了较好的改善。