摘要

转基因技术对实现作物增产增质,降低农药使用量,降低生产成本等具有重要作用,但对生态环境也存在一定的潜在威胁。为了防止转基因大豆在食品化中的滥用,对转基因产品快速鉴别技术的研究尤为迫切。紫外拉曼光谱检测技术具备外场远距离无损遥测检测,简单高效,快速准确等优点,可有效用于物质遥测鉴别领域。基于紫外拉曼光谱的转基因/非转基因大豆油以及与其他类别食用油鉴别方法,采集了五种不同食用油(两种品牌转基因/非转基因大豆油各500组样本和一种稻米油100组样本,共2 100组样本)在3 500~400 cm-1(268~293 nm)范围内的日盲紫外拉曼光谱信息,为提高光谱数据的信噪比并保证分类识别的准确性,对上述光谱数据采用Savitzky-Golay滤波降噪、基于自适应迭代加权惩罚最小二乘法(airPLS)的基线校正以及多元散射校正(MSC)的光谱数据修正等预处理。根据大豆油的紫外拉曼指纹图谱,分析出主要化学成分包含脂肪类、蛋白质类、酰胺类。将每种大豆油样本按1∶1划分为训练集和测试集,输入训练集数据至支持向量机(SVM)进行训练,采用10折交叉验证建立最佳模型,识别准确率达99.81%,对转基因大豆油的判别效果显著;采用主成分分析法(PCA)进行数据降维处理,提取出8个主成分,累计贡献率为74.84%,可代表大部分原始数据特征。在此基础上,将预处理后的光谱数据按4∶1划分为训练集和测试集,采用偏最小二乘回归判别分析方法(PLS-DA),结合10折交叉验证法建立全谱的最佳PLS-DA模型(判别阈值设置为0.5),判别准确率达到70.95%。研究表明,紫外拉曼光谱分析方法可较为准确地鉴别非转基因/转基因大豆油,同时可鉴别大豆油与稻米油,实现对转基因大豆食品的快速无损鉴别,可望成为转基因大豆油及其食品的现场检测新的技术途径,对推动转基因产品遥测鉴别技术的发展具有进步意义。