摘要
匿名通信工具在进行用户隐私保护的同时也为违法犯罪提供了便利,使得网络环境净化与监管愈发困难。对匿名网络信息交换产生的匿名流量进行分类可以细化网络监管范围。文章针对现有匿名流量分类方法存在流量分类粒度不细致和应用层匿名流量分类准确率偏低等问题,提出一种基于机器学习的匿名流量分类方法。该方法包括基于自动编码器和随机森林的特征提取模型以及基于卷积神经网络和XGBoost的匿名流量多分类模型两个模型,通过特征重构和模型结合的方式提升分类效果。最后在Anon17公开匿名流量数据集上进行了验证,证明了模型的可用性、有效性和准确性。
- 单位