摘要
对于高信噪比、完整回波、目标平稳运动等理想观测环境,现有成像技术已经较为成熟,可以获得聚焦良好的高分辨逆合成孔径雷达(inverse synthetic aperture radar, ISAR)像。但在实际中的方位回波缺损与低信噪比观测情况下,随机相位误差等因素会降低现有成像算法的性能甚至使其失效。本文首先建立了ISAR稀疏观测模型,并基于稀疏贝叶斯学习理论,通过引入Beta过程非参数先验构建层级概率模型,进而交替利用Gibbs采样及最大似然方法对ISAR像及随机相位误差进行估计。实验结果表明,所提方法在低信噪比、回波缺损等复杂观测环境下能够获得聚焦良好的ISAR图像。
-
单位西安电子科技大学; 电子工程学院; 中国人民解放军63921部队