摘要
量化森林碳储量对森林经营者的正确决策至关重要。本文以湖南省桃江县为研究区,根据2013年森林资源一类调查数据和Landsat 8遥感影像,建立多元逐步回归、偏最小二乘回归和径向基函数神经网络模型,开展碳储量的估测方法比较。结果表明:三种方法中,径向基函数神经网络模型估测森林碳储量效果最好,决定系数达到0.645,相对均方根误差为15.582 t·hm-2;其次为偏最小二乘回归模型,决定系数和相对均方根误差分别为0.511和17.135 t·hm-2;多元逐步回归模型精度最低,决定系数和相对均方根误差分别为0.431和18.105 t·hm-2。径向基函数神经网络模型反演的研究区森林碳储量分布图表明,海拔高的地方碳储量较大,城区碳储量较小,与实际植被分布情况一致。