摘要

点云配准分为粗配准和精配准两个阶段。在精配准阶段,大部分采用迭代最近点(ICP)算法。由于ICP算法的性能很大程度上依赖于点云初始位置,因此点云粗配准是点云配准的关键环节,能为ICP提供良好的初始位置。基于三视图的概念,分析了点云配准的关系,提出了一种新的点云空间位置评价方法,进而利用遗传算法提出了一种降维处理空间点云的点云粗配准新算法。首先,将三维空间点云分别投影到三个坐标平面,利用信息熵概念求解每个投影面的熵值;然后,以三个坐标平面的熵值之和作为目标函数,利用遗传算法搜索出最优空间变换矩阵;最后,将变换矩阵作用于目标点云实现点云的粗配准。试验表明,新算法配准效果好,能为精配准提供优良初始位置,且效率高。该算法能为点云的曲面重构研究提供优良的原始点云数据。

全文