摘要

为了精准预测滚动轴承的剩余使用寿命,提出一种基于VMD和ELM_AdaBoost的滚动轴承剩余寿命预测方法。该方法首先利用变分模态分解对滚动轴承全寿命振动信号进行分解,得到多个模态分量,并提取各模态分量的奇异值作为滚动轴承故障特征信息。然后利用主成分分析(PCA)进行特征信息融合,建立滚动轴承性能退化评价指标。最后将经PCA融合后奇异值代入到ELM_AdaBoost预测模型中,训练ELM_AdaBoost预测模型,对滚动轴承进行退化趋势和剩余寿命预测。仿真实验结果表明,该方法具有更高的预测精度,其预测效果优于ELM预测模型及基于EMD和ELM_AdaBoost预测模型,能够更好对滚动轴承的剩余寿命进行预测。

全文