摘要
通过对传统GM(1,1)缺陷分析和改进的基于权的PGM(1,1)建模机理描述,顾及PGM(1,1)中背景值构造时取相同的参数不能充分降低模型的预测误差,对不同的时刻引入不同的参数来改进GM(1,1)背景值序列的计算公式,将这种背景值构造方法和灰元N引入GM(1,1)建立了新的白化方程。在建立的新的白化方程基础上,用龙格-库塔法以修正的初始值计算累加值的模拟序列。针对引入的参数较多问题,采用粒子群算法寻找满足相对误差均值最优的参数,从而建立了基于粒子群优化算法和加权灰色组合的PSO-GM模型。工程实例应用表明,新模型的拟合精度高,预测效果好,相对其他两种原有模型预测精度有明显提高。
-
单位东华理工大学; 江西省水利规划设计院; 流域生态与地理环境监测国家测绘地理信息局重点实验室