摘要

通过构建采用外部输入的非线性自回归神经网络(NARX),利用1979年1月1日00时—2003年12月25日23时逐时的实测潮位数据和再分析气象数据结合调和分析预报结果搭建模型,对库克斯(Cuxhaven)港口2004—2018年中增水最大的两次风暴潮极端事件潮位进行预报和验证,同时对影响模型性能的参数进行量化分析。结果表明:在NARX神经网络延迟数为24 h时模型的精度最高,两次极端风暴潮验证下的R2分别为0.94和0.95,且在最高潮位时的误差分别为57.78 cm和26.55 cm。实验中模型在延迟数方面存在阈值,当延迟数为24 h时模型效果最佳,在延迟数达到阈值前模型的精度逐渐上升,超过该阈值后模型精度下降;输入时间数据序列的长短会影响模型的精度,序列越长模型精度越高,但影响效果会逐渐降低。

  • 单位
    自然资源部第一海洋研究所