摘要

针对反向传播(back propagation,BP)神经网络在训练过程中存在的易过度拟合、收敛速度慢和易陷入局部最优等问题,引入天牛须搜索(beetle antennae search,BAS)算法优化传统BP神经网络中的权值和阈值,建立了BAS-BP神经网络模型。利用深圳市某深基坑开挖的周围道路地表沉降监测数据进行BAS-BP模型仿真测试。实验结果表明,BAS-BP模型在均方误差(mean square error,MSE)、平均绝对误差(mean absolute error,MAE)和平均绝对百分比误差(mean absolute percentage error,MAPE)精度指标上均优于BP神经网络模型,预测精度更高。