摘要
提出了一种新的半监督两个视角的多示例聚类模型,整合文本视角和图像视角解决了伴有少量标签的多示例图像聚类问题。提出的模型首先嵌入概念分解和多示例核成为一个整体,学习每个视角的关联矩阵和两个视角所共享的聚类指示矩阵。而后,应用l2,1范数学习最优的关联矩阵和聚类指示矩阵。进一步地,为了增加包之间的判别力,提出的模型强迫相同标签包的聚类指示向量间的相似性趋于1,不同标签包的指示向量间的相似性趋于0。最后,给出一种迭代更新算法优化提出的模型。实验结果表明,提出的模型优于现有的多示例聚类模型。
- 单位